
01

Audit Report
July, 2021 NETHER

https://audits.quillhash.com/smart-contract-audit

Contents

Scope of Audit 01

02

03

04

08

10

11

Techniques and Methods

Issue Categories

Issues Found – Code Review/Manual Testing

Summary

Automated Testing

Disclaimer

050401

The scope of this audit was to analyze and document the Nether Token
smart contract codebase for quality, security, and correctness.

We have scanned the smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that we considered:

Scope of Audit

Checked Vulnerabilities

Re-entrancy

Timestamp Dependence

Gas Limit and Loops

DoS with Block Gas Limit

Transaction-Ordering Dependence

Use of tx.origin

Exception disorder

Gasless send

Balance equality

Byte array

Transfer forwards all gas

ERC20 API violation

Malicious libraries

Compiler version not fixed

Redundant fallback function

Send instead of transfer

Style guide violation

Unchecked external call

Unchecked math

Unsafe type inference

Implicit visibility level

0502

Techniques and Methods
Throughout the audit of smart contract, care was taken to ensure:

The overall quality of code.
Use of best practices.
Code documentation and comments match logic and expected behaviour.
Token distribution and calculations are as per the intended behaviour
mentioned in the whitepaper.
Implementation of ERC-20 token standards.
Efficient use of gas.
Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods and tools were used to review all the
smart contracts.

Structural Analysis
In this step we have analyzed the design patterns and structure of smart
contracts. A thorough check was done to ensure the smart contract is
structured in a way that will not result in future problems.
SmartCheck.

Static Analysis
Static Analysis of Smart Contracts was done to identify contract
vulnerabilities. In this step a series of automated tools are used to test
security of smart contracts.

Code Review / Manual Analysis
Manual Analysis or review of code was done to identify new vulnerability
or verify the vulnerabilities found during the static analysis. Contracts were
completely manually analyzed, their logic was checked and compared with
the one described in the whitepaper. Besides, the results of automated
analysis were manually verified.

Gas Consumption
In this step we have checked the behaviour of smart contracts in
production. Checks were done to know how much gas gets consumed and
possibilities of optimization of code to reduce gas consumption.

0203

Tools and Platforms used for Audit
Remix IDE, Truffle, Truffle Team, Ganache, Solhint, Mythril, Slither,
SmartCheck.

Low level severity issues

Informational

Medium level severity issues

High severity issues

Issue Categories

Low level severity issues can cause minor impact and or are just warnings
that can remain unfixed for now. It would be better to fix these issues at
some point in the future.

These are severity four issues which indicate an improvement request, a
general question, a cosmetic or documentation error, or a request for
information. There is low-to-no impact.

The issues marked as medium severity usually arise because of errors and
deficiencies in the smart contract code. Issues on this level could potentially
bring problems and they should still be fixed.

A high severity issue or vulnerability means that your smart contract can be
exploited. Issues on this level are critical to the smart contract’s
performance or functionality and we recommend these issues to be fixed
before moving to a live environment.

Every issue in this report has been assigned with a severity level. There
are four levels of severity and each of them has been explained below.

0404

Number of issues per severity

Open

Type High

Closed

Low

0 3

0 0

00

00

Medium Informational

Introduction

Issues Found – Code Review / Manual Testing

 During the period of June 29, 2021 to June 30, 2021 - QuillAudits Team
performed a security audit for Nether smart contracts.

The code for the audit was taken from following the official link:
https://bscscan.com/address/0x8182ac1c5512eb67756a89c40fadb2311757b
d32#code

High severity issues

No issues were found.

No issues were found.

No issues were found.

Medium severity issues

Low level severity issues

https://bscscan.com/address/0x8182ac1c5512eb67756a89c40fadb2311757bd32#code

0505

Informational

Wrong comment

Public function that could be declared external

1.

2.

Line Comment

627 // Mint 100 tokens to msg.sender

Description
The above comment is wrong. According to the code, 26000000 tokens
are minted for the address
0x7C8137772216B54cc7a4399A76a98E76Ab63b579.

A misunderstanding comment could influence code readability.

Remediation
We recommend the comment should be corrected, or removed properly.

Description
The following public functions that are never called by the contract
should be declared external to save gas:

 name()
 symbol()
 totalSupply()
 balanceOf()
 transfer()
 approve()
 transferFrom()
 allowance()
 increaseAllowance()
 decreaseAllowance()

Remediation
Use the external attribute for functions never called from the contract.

0506

Unlocked pragma and Incorrect versions of Solidity3.

Description
solc frequently releases new compiler versions. Using an old version
prevents access to new Solidity security checks. We also recommend
avoiding complex pragma statements or using unlocked pragma.

Remediation
Deploy with any of the following Solidity versions:

0.6.11 - 0.6.12
0.7.5 - 0.7.6

Use a simple pragma version that allows any of these versions. Use one
Solidity version for all contracts. Consider using the latest version of
Solidity for testing.

^0.6.2
^0.6.0

0507

Functional test

Function Names Testing results

name()

symbol()

decimals()

totalSupply()

balanceOf()

transfer()

approve()

allowance()

transferFrom()

increaseAllowance()

decreaseAllowance()

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

0508

Automated Testing

Slither

0509

Results
No major issues were found. Some false positive errors were reported
by the tool. All the other issues have been categorized above according
to their level of severity.

08

Disclaimer

Quillhash audit is not a security warranty, investment advice, or an
endorsement of the Nether platform. This audit does not provide a security
or correctness guarantee of the audited smart contracts. The statements
made in this document should not be interpreted as investment or legal
advice, nor should its authors be held accountable for decisions made
based on them. Securing smart contracts is a multistep process. One audit
cannot be considered enough. We recommend that the Nether Team put in
place a bug bounty program to encourage further analysis of the smart
contract by other third parties.

10

07

Closing Summary

11

Overall, smart contracts are very well written and adhere to guidelines.

No instances of Integer Overflow and Underflow vulnerabilities or Back-
Door Entry were found in the contract, but relying on other contracts might
cause Reentrancy Vulnerability.

Numerous issues of least severity were discovered during the initial audit. It
is recommended to kindly go through the above-mentioned details and fix
the code accordingly.

17

NETHER

https://audits.quillhash.com/smart-contract-audit
https://example.comhttps://audits.quillhash.com/smart-contract-audit

